Physics 1240: Sound and Music

Today (7/16/19): Psychoacoustics: The Ear

<u>Next time</u>: Psychoacoustics: The Brain, Auditory Illusions, Dissonance

Review: Waveform/Timbre

- <u>Tones</u>: periodic; composed of integer multiples of the fundamental frequency
- <u>Noise</u>: not periodic
- <u>Harmonics</u>: set of frequencies f_0 , $2f_0$, $3f_0$, $4f_0$, $5f_0$, ...

Review: Amplitude/Loudness

- <u>Intensity</u>: energy flow per unit area (W/m²)
 - proportional to the pressure amplitude squared
- <u>SIL</u>: logarithmic version of intensity, relative to reference value $I_0 = 10^{-12} \text{ W/m}^2$, measured in decibels

$$SIL [dB] = 10 \log \left(\frac{I}{10^{-12} \text{ W/m}^2}\right)$$
$$SIL_1 - SIL_2 = 10 \log \left(\frac{I_1}{I_2}\right)$$

• Two sounds playing together \Rightarrow add their intensities

Review:		Intensity (W/m ²)	SIL (dB)	Example
<u>Useful tips</u>		10 ⁻¹²	0 dB	Inaudible
•	Multiplying the intensity by 10 means adding 10 dB to the <i>SIL</i> Doubling the intensity means adding 3 dB to the <i>SIL</i>	10 ⁻¹¹	10 dB	Pin drop
		10 ⁻¹⁰	20 dB	Recording
		10 ⁻⁹	30 dB	Studio
•		10 ⁻⁸	40 dB	Library
		10 ⁻⁷	50 dB	City of Boulder
•	Halving the intensity means subtracting 3 dB	10 ⁻⁶	60 dB	nighttime noise ordinance Conversation
	from the SIL	10 ⁻⁵	70 dB	
•	Doubling the distance away from a source means subtracting 6 dB from the <i>SIL</i>	10-4	80 dB	Vacuum cleaner
		10 ⁻³	90 dB	Subway Train

Clicker Question 6.1

If a typical vacuum cleaner produces a sound intensity level of 80 dB, how many vacuums would you need operating simultaneously next to each other to produce double this *SIL* (160 dB)?

- A) 2
- B) 80
- C) 100
- D) a thousand
- E) a hundred million

Clicker Question 6.1

If a typical vacuum cleaner produces a sound intensity level of 80 dB, how many vacuums would you need operating simultaneously next to each other to produce double this *SIL* (160 dB)?

- A) 2
- B) 80
- C) 100
- D) a thousand
- E) a hundred million

Adding 10 dB corresponds to multiplying the intensity by 10

Adding 80 dB means multiplying the intensity by 10⁸

Psychoacoustics

- <u>Psychoacoustics</u>: the study of human perception of sound
- Does loudness just depend on amplitude?

FIGURE 5.1 Range of frequencies and intensities to which the auditory system (ear) responde

Loudness Level

- <u>Phon</u>: unit of perceived loudness level
 - equal to the *SIL* measured at 1000 Hz
- <u>Equal-Loudness</u>
 <u>Contours</u> :

used to convert between *SIL* [dB] and loudness level [phons]

Contour Map

Example:

If you hear two pure tones with f=200 Hz and f=4,000 Hz, both at 60 dB SIL, which will be the loudest?

Example:

If you hear two pure tones with f=200 Hz and f=4,000 Hz, both at 60 dB SIL, which will be the loudest?

Clicker Question 6.2

If you play a piano chord with notes of frequencies 130 Hz, 330 Hz, 2000 Hz, and 4000 Hz so that all sound the same loudness, which note will you have to play the hardest?

A) 130 Hz
B) 330 Hz
C) 2000 Hz
D) 4000 Hz
E) All the same

Clicker Question 6.2

If you play a piano chord with notes of frequencies 130 Hz, 330 Hz, 2000 Hz, and 4000 Hz so that all sound the same loudness, which note will you have to play the hardest?

A) <u>130 Hz</u>
B) 330 Hz
C) 2000 Hz
D) 4000 Hz
E) All the same

The Human Ear

Why is there a middle ear?

- To provide some amplification of pressure waves
- To better couple pressure waves to vibrations in the cochlea
- To protect the inner ear from extremely loud sounds
- To maintain the tympanic membrane (eardrum) in proper pressure equilibrium

The Middle and Inner Ears

VIDEO on how the ear works

https://www.youtube.com/watch?v=46aNGGNPm7s

Need to know:

Outer ear: pinna, auditory canal

<u>Middle ear</u>: ear drum, Eustachian tube, ossicles: hammer (malleus), anvil (incus), stirrup (stapes)

Inner ear: cochlea, oval window, round window, basilar membrane, hair cells, auditory nerve

Place theory

- Inner ear converts intensity information to frequency information (cochlea="mechanical spectrum analyzer")
- Different places on the basilar membrane pick up different frequencies

The closer to the base, the higher the resonant frequency

Tinnitus (ringing)

Caused by random movement of damaged hair cells in cochlea, which the brain interprets as sound.

Intact cochlea

Damaged cochlea

Protect your hearing!!

- Hearing damage is <u>cumulative</u> and <u>permanent</u>.
- Very high quality hearing protection can be had for ~\$20 (universal fit) or ~\$200 (custom fit). They are <u>spectrally flat</u> and sound great!

Gross-looking custom earplugs sound great and save your ears!

Noise Source	Decibel Level (dB)	How long can you listen without protection?
Jet take off	130	0 minutes
Ambulance siren	109	Less than 2 minutes
Personal music player at maximum volume	106	3.75 minutes
Pop/Rock concert	103	7.5 minutes
Riding a motorcycle	97	30 minutes
Using an electric drill	94	1 hour
Lawnmower or leaf blower	85	2 hours